Question 1. Activation energy of a chemical reaction can be determined by

- (a) determining the rate constant at standard temperature
- (b) determining the rate constants at two temperatures
- (c) determining probability of collision
- (d) using catalyst

Solution: (b) Activation energy of a chemical reaction is related to rate constant of a reaction at two different temperatures i.e., K_1 and K_2 respectively.

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

where, $E_a = activation energy$

 T_2 = higher temperature

 T_1 = lower temperature

 k_1 = rate constant at temperature T_1

 k_2 = rate constant at temperature T_2

This equation is known as Arrhenius equation.